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Computational uncertainties  
are unavoidable in numerical 
calculations. The generation and 
propagation of uncertainties 

in the initial conditions, data, and the 
constants in mathematical model can have 
serious implications in the reliability of the 
simulation and the decisions being made 
based on the simulation. These uncertainties 
can be quantified by probability distributions 
and the correlations or dependency 
relationships between the variables.

Monte Carlo is a classical approach in 
handling probabilistic uncertainty and it 
is still widely used. However, it becomes 
less powerful when encountering the 
uncertainties that have unknown dependency 
relationships or distributions that are not 
fully specified. Various non-Monte Carlo 
methods have been developed to deal with 
unknown dependency relationships and 
imprecise probabilities since the 1960s. 
Interval arithmetic is one of the main 
approaches, in which intervals are considered 
independent in order to bound all the 
possible solutions. The bounds obtained by 
this are usually pessimistic when dependency  
relationships exist.

It is important to know the dependency 
relationships between variables in 
computation in order to obtain tight bounds 
for the possible results. Various researchers 
have been working on approaches concerning 
dependency, and progress has been made 
in gaining tight bounds. However, no 
approach that calculates the sharp bounds 
had been found until our recent discovery of 
Probability Distribution Variable Arithmetic, 
or PDV Arithmetic, which extends the 
interval arithmetic approach with the 
exclusive feature of complete dependency 
tracking throughout computation. 

A PDV is a random variable and is  
characterized by its generalized probabilistic 
discretization, which is a set of pairs of 
bins and probabilities. Using generalized 
probabilistic discretization is required 
because computers can only store discrete 
quantities. It is also an effective way to 
represent uncertainty, especially when 
the probability distributions are not fully 
specified from lack of sufficient information. 
In view of the fact that different random 
variables may have the same generalized 
probabilistic discretization, a PDV may be 
considered as a family of random variables 
that have the same generalized probabilistic 
discretization. In this point of view, 
every random variable in the family is a 
representative of the PDV.

In a computation, all variables involved 
are put into two categories: input variables 
and derived variables. The latter is derived 
from the former via deterministic function 
expression. Thus, the dependency relationship 
between two derived variables can be well-
defined by the relationship between the two 
pre-image sets, which are the sets of the input 
variables that define the derived variables. 
The extent of dependency can be represented 
by how much the two pre-image sets overlap. 
Every binary operation between two PDVs is 
turned into the same operation between the 
corresponding bins. Dependency tracking 
requires that not every arbitrary pair of 
bins can be grouped to be operated on. We 
know that a bin of a derived PDV is fully 
determined by some bins of the input PDVs. 
To see whether two bins from the two PDVs 
can be paired, one needs to compare their 
corresponding bins from the input PDVs 
and justify whether they are compatible. 
Only the bins with compatible bins from 
the input PDVs can be grouped and then 
operated on using interval arithmetic. Under 
the assumption that all input PDVs are 
probabilistically independent, the associated 
probabilities of the bins can be computed.

PDV Arithmetic is formulated based on the 
above ideas. It can be proven that the bounds 
calculated by using PDV Arithmetic include 
all the possible solutions and these bounds 
converge to the sharp bounds as the widths 
of the refinements of the input PDVs tends 
to 0. Sensitivity analysis shows that these 
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bounds are stable in the sense that small 
perturbations of the input bins do not affect 
the bounds significantly provided that no 
singularity occurs in the computation.

As an application, we implement PDV 
Arithmetic in Fortran 77 by including PDV 
as a basic data type. A software package 
PDVFOR77 that includes a preprocessor 
written in Perl and a subroutine library in 
Fortran 77 enables the user to write PDV in a 
program as simple as writing real and integer. 
Every statement in the program involving a 
PDV data type is parsed into a sequence  
of subroutine calls that implement PDV 
Arithmetic.

An example about the eigenvalues of a  
2 × 2 random matrix are demonstrated in 
the following three figures. The first figure 
illustrates the dependency relationship 
between the two eigenvalues, and the second 
and third figures compare PDV Arithmetic 
with Monte Carlo simulation.

Another example is given in the last figure to 
illustrate the probability distribution bounds 
(pbox, in red) calculated by PDV Arithmetic 
for the output of system y = (a + ba), where a 
belongs to 3 independent intervals [0.8, 1.0], 
[0.5, 0.7], [0.1, 0.4], and lnb follows N (µ, σ) 
where µ belongs to 3 independent intervals 
[0.6, 0.8], [0.1, 0.4], [0.0, 1.0], and σ belongs 
to 3 independent intervals [0.4, 0.5], [0.25, 
0.35], [0.1, 0.2]. In contrast, the trend of a 
special probability distribution (refined  
p-box, in blue) is calculated with an 
additional assumption that a, µ and σ are 
uniformly distributed in each of the  
above intervals.

The details about PDV Arithmetic can be 
found in [1]. The PDVFOR77 package  
and this paper can be found at  
http://math.lanl.gov/~liw.

[1] W. Li, and J.M. Hyman, “Computer 
Arithmetic for Probability Distribution 
Variables,” Reliability Engineering and System 
Safety, 85, 1–3 (2004) pp. 191–204.
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Figure 1— 
Illustration of 
dependency between  
the two eigenvalues  
of matrix  
((a,c)T, (b,d)T) where  
a = 3d2 + 1, c = 2a – 1,  
b = 0.5/a + 0.5,  
d ∈  [–1,1] and d is 
uniformly distributed.

Figure 2— 
Comparisons between 
PDV Arithmetic (red 
line) and Monte Carlo 
simulation (blue line) 
for the probability 
density functions of 
the eigenvalues of the 
matrix in Fig. 1.

Figure 3— 
Probability distribution 
bounds for the output of 
y = (a + b)a.
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